-
J. Michl, K.C. Park, P. Swietach
Evidence-based guidelines for controlling pH in mammalian live-cell culture systems
Commun. Biol., 2 (1) (2019), p. 144
-
G.M. Alwan
pH-Control problems of wastewater treatment plants
Al-Khwarizmi Eng. J., 4 (2) (2008), pp. 37-45
-
R.K. Goel, J.R.V. Flora, J.P. Chen, Flow Equalization and Neutralization. In Physicochemical Treatment Processes. Handbook of Environmental Engineering, 2005; Vol. 3, pp 22-26.
-
M. Lukić, I. Pantelić, S.D. Savić
Towards optimal pH of the skin and topical formulations: from the current state of the art to tailored products
Cosmetics, 8 (3) (2021), p. 69
-
S. Hawkins, B.R. Dasgupta, K.P. Ananthapadmanabhan
Role of pH in skin cleansing
Int. J. Cosmet. Sci., 43 (4) (2021), pp. 474-483
-
T. Kalak, K. Gąsior, D. Wieczorek, R. Cierpiszewski
Improvement of washing properties of liquid laundry detergents by modification with N-hexadecyl-N, N-dimethyl-3-ammonio-1-propanesulfonate sulfobetaine
Text. Res. J., 91 (1–2) (2020), pp. 115-129
-
W.W. Tan, F. Lu, A.P. Loh, K.C. Tan
Modeling and control of a pilot pH plant using genetic algorithm
Eng. Appl. Artif. Intell., 18 (4) (2005), pp. 485-494
-
K.A. Hasselbalch
Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensaeuure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl
Biochemische Zeit, 78 (1916), pp. 112-144
-
M.K. Nguyen, L. Kao, I. Kurtz
Calculation of the equilibrium pH in a multiple-buffered aqueous solution based on partitioning of proton buffering: a new predictive formula
Am. J. Physiol.-Renal Physiol., 296 (6) (2009), pp. F1521-F1529
-
S. Bennett
A brief history of automatic control
IEEE Control Syst. Mag., 16 (3) (1996), pp. 17-25
-
Y. Zhu, S. Nishigori, N. Shimura, T. Nara, E. Fujimori
Development of an automatic pH adjustment instrument for the preparation of analytical samples prior to solid phase extraction
Anal. Sci., 36 (5) (2020), pp. 621-626
-
U. Imtiaz, S.S. Jamuar, J.N. Sahu, P.B. Ganesan
Bioreactor profile control by a nonlinear auto regressive moving average neuro and two degree of freedom PID controllers
J. Process Control, 24 (11) (2014), pp. 1761-1777
-
S.W. Harcum, K.S. Elliott, B.A. Skelton, S.R. Klaubert, H. Dahodwala, K.H. Lee
PID controls: the forgotten bioprocess parameters
Discover Chemical Engineering, 2 (1) (2022), pp. 1-18
-
V. Chotteau, H. Hjalmarsson, In Tuning of Dissolved Oxygen and pH PID Control Parameters in Large Scale Bioreactor by Lag Control, Proceedings of the 21st Annual Meeting of the European Society for Animal Cell Technology (ESACT), , 2009; pp 327-330.
-
L. Hoshan, R. Jiang, J. Moroney, A. Bui, X. Zhang, T.-C. Hang, S. Xu
Effective bioreactor pH control using only sparging gases
Biotechnol. Prog., 35 (1) (2019), pp. 1-7
-
A. Altınten
Generalized predictive control applied to a pH neutralization process
Comput. Chem. Eng., 31 (10) (2007), pp. 1199-1204
-
H. Helmy, D.A.M. Janah, A. Nursyahid, M.N. Mara, T.A. Setyawan, A.S. Nugroho, In Nutrient Solution Acidity Control System on NFT-Based Hydroponic Plants Using Multiple Linear Regression Method, 2020 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp 272-276.
-
E.H.K. Alkamil, S. Al-Dabooni, A.K. Abbas, R. Flori, D.C. Wunsch
Learning From Experience: An Automatic pH Neutralization System Using Hybrid Fuzzy System and Neural Network
Procedia Comput. Sci., 140 (2018), pp. 206-215
-
N. He, M. Zhang, R. Li
An improved approach for robust MPC tuning based on machine learning
Mathematical Problems in Engineering, 2021 (2021), pp. 1-18
-
B.M. Åkesson, H.T. Toivonen, J.B. Waller, R.H. Nyström
Neural network approximation of a nonlinear model predictive controller applied to a pH neutralization process
Comput. Chem. Eng., 29 (2) (2005), pp. 323-335
-
S.J. Pan, Q. Yang
A Survey on Transfer Learning
IEEE Trans. Knowl. Data Eng., 22 (2010), pp. 1345-1359
-
G. Pesciullesi, P. Schwaller, T. Laino, J.-L. Reymond
Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
Nat. Commun., 11 (1) (2020), pp. 1-8
-
Y. Zhang, L. Wang, X. Wang, C. Zhang, J. Ge, J. Tang, A. Su, H. Duan
Data augmentation and transfer learning strategies for reaction prediction in low chemical data regimes
Org. Chem. Front., 8 (7) (2021), pp. 1415-1423
-
Y. Amar, A.M. Schweidtmann, P. Deutsch, L. Cao, A. Lapkin
Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis
Chem. Sci., 10 (27) (2019), pp. 6697-6706
-
C. Zhang, Y. Amar, L. Cao, A.A. Lapkin
Solvent selection for Mitsunobu reaction driven by an active learning surrogate model
Org. Process Res. Dev., 24 (12) (2020), pp. 2864-2873
-
M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of machine learning. MIT press: 2012.
-
M.I. Jordan, T.M. Mitchell
Machine learning: Trends, perspectives, and prospects
Science, 349 (6245) (2015), pp. 255-260
-
G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, L. Zdeborová
Machine learning and the physical sciences
Rev. Mod. Phys., 91 (4) (2019), pp. 1-39
-
N.S. Eyke, W.H. Green, K.F. Jensen
Iterative experimental design based on active machine learning reduces the experimental burden associated with reaction screening
React. Chem. Eng., 5 (10) (2020), pp. 1963-1972
-
P. Jorayev, D. Russo, J.D. Tibbetts, A.M. Schweidtmann, P.P. Deutsch, S.D. Bull, A.A. Lapkin
Multi-objective Bayesian optimisation of a two-step synthesis of p-cymene from crude sulphate turpentine
Chem. Eng. Sci., 116938 (2021), pp. 1-10
-
B.J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J.I.M. Alvarado, J.M. Janey, R.P. Adams, A.G. Doyle
Bayesian reaction optimization as a tool for chemical synthesis
Nature, 590 (7844) (2021), pp. 89-96
-
T.K. Ho, Random decision forests. Proceedings of 3rd International Conference on Document Analysis and Recognition 1995, 1, 278-282.
-
C.E. Rasmussen, C.K.I. Williams
Gaussian Processes for Machine Learning
MIT Press (2006)
-
J. Schmidhuber
Deep learning in neural networks: an overview
Neural Networks, 61 (2015), pp. 85-117
-
L. Cao, D. Russo, K. Felton, D. Salley, A. Sharma, G. Keenan, W. Mauer, H. Gao, L. Cronin, A.A. Lapkin, Optimization of Formulations Using Robotic Experiments Driven by Machine Learning DoE. Cell Reports Physical Science 2021, 2 (1), 100295 1-17.
- [36]
D.S. Salley, G.A. Keenan, D.-L. Long, N.L. Bell, L. Cronin
A Modular Programmable Inorganic Cluster Discovery Robot for the Discovery and Synthesis of Polyoxometalates
ACS Cent. Sci., 6 (9) (2020), pp. 1587-1593
-
Nicolas, J. FLab. https://pypi.org/project/flab/ (accessed 23.04.22).
-
W.-Y. Loh
Regression trees with unbiased variable selection and interaction detection
Statistica Sinica, 12 (2002), pp. 361-386
- D.S. Wigh, J.M. Goodman, A.A. Lapkin
A review of molecular representation in the age of machine learning
WIREs Comput. Mol. Sci., e1603 (2022), pp. 1-19
- A. Pomberger, A.A. Pedrina McCarthy, A. Khan, S. Sung, C.J. Taylor, M.J. Gaunt, L. Colwell, D. Walz, A.A. Lapkin
The effect of chemical representation on active machine learning towards closed-loop optimization
React. Chem. Eng., 7 (2022), pp. 1368-1379